Spider wrapping silk fibre architecture arising from its modular soluble protein precursor
نویسندگان
چکیده
Spiders store spidroins in their silk glands as high concentration aqueous solutions, spinning these dopes into fibres with outstanding mechanical properties. Aciniform (or wrapping) silk is the toughest spider silk and is devoid of the short amino acid sequence motifs characteristic of the other spidroins. Using solution-state NMR spectroscopy, we demonstrate that the 200 amino acid Argiope trifasciata AcSp1 repeat unit contrasts with previously characterized spidroins, adopting a globular 5-helix bundle flanked by intrinsically disordered N- and C-terminal tails. Split-intein-mediated segmental NMR-active isotope-enrichment allowed unambiguous demonstration of modular and malleable "beads-on-a-string" concatemeric behaviour. Concatemers form fibres upon manual drawing with silk-like morphology and mechanical properties, alongside secondary structuring and orientation consistent with native AcSp1 fibres. AcSp1 structural stability varies locally, with the fifth helix denaturing most readily. The structural transition of aciniform spidroin from a mostly α-helical dope to a mixed α-helix/β-sheet-containing fibre can be directly related to spidroin architecture and stability.
منابع مشابه
Ancient Properties of Spider Silks Revealed by the Complete Gene Sequence of the Prey-Wrapping Silk Protein (AcSp1)
Spider silk fibers have impressive mechanical properties and are primarily composed of highly repetitive structural proteins (termed spidroins) encoded by a single gene family. Most characterized spidroin genes are incompletely known because of their extreme size (typically >9 kb) and repetitiveness, limiting understanding of the evolutionary processes that gave rise to their unusual gene archi...
متن کاملSpider silk fibers spun from soluble recombinant silk produced in mammalian cells.
Spider silks are protein-based "biopolymer" filaments or threads secreted by specialized epithelial cells as concentrated soluble precursors of highly repetitive primary sequences. Spider dragline silk is a flexible, lightweight fiber of extraordinary strength and toughness comparable to that of synthetic high-performance fibers. We sought to "biomimic" the process of spider silk production by ...
متن کاملBenefits of size dimorphism and copulatory silk wrapping in the sexually cannibalistic nursery web spider, Pisaurina mira.
In sexually cannibalistic animals, male fitness is influenced not only by successful mate acquisition and egg fertilization, but also by avoiding being eaten. In the cannibalistic nursery web spider, Pisaurina mira, the legs of mature males are longer in relation to their body size than those of females, and males use these legs to aid in wrapping a female's legs with silk prior to and during c...
متن کاملSpider Dragline Silk Molecular Properties and Recombinant Expression
Rising, A. 2007. Spider dragline silk – molecular properties and recombinant production. Doctor’s dissertation. ISSN: 1652-6880, ISBN: 978-91-576-7337-4 Spider dragline silk possesses several desirable features of a biomaterial; it has extraordinary mechanical properties, is biocompatible and biodegradable. It consists of large proteins, major ampullate spidroins (MaSp:s), that contain alternat...
متن کاملRecombinant Minimalist Spider Wrapping Silk Proteins Capable of Native-Like Fiber Formation
Spider silks are desirable biomaterials characterized by high tensile strength, elasticity, and biocompatibility. Spiders produce different types of silks for different uses, although dragline silks have been the predominant focus of previous studies. Spider wrapping silk, made of the aciniform protein (AcSp1), has high toughness because of its combination of high elasticity and tensile strengt...
متن کامل